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AbslraeL A version of the replica trick can be used to evaluate means of thc absolute 
values of functions that are not positive-definite (and with some modifications the mean 
logarithm of the absolute value). This trick can he applied in the context of stochastic 
equations, where the absolute value of the  Jacobian of the slochastic function in each 
solution must be computed. The cal~ulalion of the average number of solutions of 
the ‘naive’ mean ficld equations for the SK spin-glass is discussed, an extension of the 
considerations to other mean field equations (such as TAP) is straightforward. n e  B W  
superspmctly is found to provide a usetul tool in uncovering same puzzling aspects 
in these calculations. The trick presented here provides a possible solulion to these 
problems. 

1. Introduction 

In this article we show that a version of the replica trick can be used to calculate 
the mean of the absolute value of quantities that are not positivedefinite and, with 
slight modifications, the mean logarithm of the absolute value. Given a non-positive 
function f( J) ( J  a finite-dimensional variable) we wish to calculate 

= d J  P ( J ) ! f ( J ) !  !1! Jv 
where P( J) is a probability distribution, and D is the (eventually infinite) domain in 
which P # 0. 

This problem appears, for example, in the treatment of systems in which one is 
led to consider ‘partition functions’ that are not positivedefinite, such as directed 
polymers in random media [l]. 

Another context in which the problem arises naturally is that of stochastic equa- 
tions with more than one solution. Given a system of N equations on an N- 
dimensional variable m: 

C(m,.7) = O  i =  1 ,...,. V (2) 
where the J are some stochastic variables, and a function F ( m , J )  (which in this 
work we assume to be positivc-valued) one can calculate the annealed mean of F 
over the solutions of (2): 
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where 
aGi A . .  = -, 

'1 am, (4) 
J 

If one disregards the absolute value, then F is weighted with the sign of the 
determinant of each solution [2]. If equations (2) have more than one solution, 
disregarding the absolute value is not a minor detail. For example, setting F = 1 
integral (3) yields not the number of solutions of (2) but an invariant related to 
the contour values of G (for example, in one dimension either 1 or 0). Hence, the 
absolute value is mandatory to calculate the mean number of solutions. 

In integral (3) without the absolute value, when exponentiating the Jacobian as an 
integral over Grassmann variables, the exponent has the fundamental BRST supersym- 
mmetry discovered in this context by Parisi and Sourlas 12, 31 and Zinn-Justin [4]. 
This symmetry will be used later as a powerful tool with which to analyse the results 
obtained in such a calculation. 

Both in the case of means of (or logarithms of) absolute values of stochastic 
functions and in the case of means over the roots of a stochastic equation, the 
trick consists in calculating the means with the function that is not positivedefinite 
raised to even powers n. It is then proved that under very wide conditions there 
is a criterion to choose unambiguously an analytic continuation over n that yields 
the correct average. In the case of stochastic equations this can  be viewed as a 
regularization that breaks the BRST symmetry. 

In the second part of this article, we concentrate our attention on the calculation 
of the average number of solutions of the mean-field equations for the SK spin glass. 
For simplicity, the discussion is rcstrictcd to tbc 'naive' mean-field equations [SI (i.e. 
without the reaction term), but it can also be applied to the TAP equations [6]. In this 
part of the work we snaii make extcnsive use of the resuits (and as far as possibie the 
notations) of de Dominicis et a1 (DGGO) [7], Bray and Moore (BM) [8] and Bkayama 
and Nemoto (TN) [9]. 

Using the BRST symmetry repcatedly we show that equation (3) (with F = 1) 
corresponding to the 'naive' mean-field equation for T > 0 yields one when computed 
without the absolute value (a similar argument can be made Cor the TAP equations). 

we iinaiiy I n u u t c  now mt: t r i w  UIS.FUSSCU 111 LILT: I I I S L  SCCLIUII iiiay pruviuc 4 way 

out, and that the existing calculations may still be valid. 

.. 1-  r ~ ~ - I . ~ ~  ...~~~.... .~ >:..~ .... > I_ _L. E_^.  -a-A:-.. :A"  - 

2. Means of absolute values 

Consider first the integral (1). Suppose first that 2, is bounded, and define for 
n = 2 , 4 , 6 , .  . . 

dJP(J)jn(.7) n = 2 , 4 ,  . . .  (5) 

(these are the magnitudes we actually calculate), and for all complex n = nR +in, ,  
nR > 0 

Clearly h( n )  = I I (  n)  for n even. The question now is how to continue analytically 
h ( n )  in order to reproduce I l ( n ) .  It turns out that this can be done unambiguously 
by imposing some gIowth conditions on the continuation: we show later that if we 
find a continuation h(n)  of h ( n )  that 
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(i) is analytic for nR > 0 
(ii) satisfies for some positive reals C,, Y,: 

Ih(n)l < C,IY;I 

h ( n )  = If(??) ). 0 

n R  > 0 

(note that in general fL( 1) f h( l)), then; 

and 

(one can also calculate the mean logarithm of Ifl). Any different continuation will 
violate the bound (7). In particular the one obtained by calculating (5 )  for all n grows 
exponentially in the imaginary direction if f has a region of positive expectation in 
which it is negative. 

For bounded domain 'D, and assuming f itself is bounded, H ( n )  can be written 
as 

Y* 
f l ( n )  = 1 dv p(y)y" (10) 

where yZ is the  maximum value of I f [  in D, and P is a positive weight function 
( P S y  = J,, P( J) d J ,  6fl the  domain where y < I f 1  < y + 6y). Hence, If( n) is a 
moment functiont and it follows that it is analytic for nR > 0 and satisfies 

A(n)  < C,lY;I nR > 0. (1') 

is analytic and hounded for nR > 0, and vanishes for n even real. Hence, by Carlson's 
theorem [ I l l  it is zero for nR > 0, and the  uniqueness of fL is proved. 

Consider now J = {Jij] and P ( J i j )  a Gaussian distribution 

In this case we have to change the form of H(n)  slightly to make it satisfy a bound 
such as (11). We can define for example an n-dependent probability distribution (for 
nR > O) 

and modify ( 5 )  and (6) by using (14) for each n. The factor in the exponential 
appropriately reduces the growth with n, provided that, for all J i j ,  

. N  ~ I 2  1" I SI. I "  v ( l < \  2 J ~ ' ~ - " ' , J ' , ' " ' ,  ' I  ."I 

a quite unrestrictive condition. Definition (14) has to be modified if the logarithm of 
the absolute value is to be calculated. 

t This way of showing analyticity and bounds is bomwcd lrom Mehta [lo], who applied it in a dilkrent 
context. 
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2.1. Stochaslic equations 

Consider now the system of N stochastic equations (2). We assume that they have a 
non-infinite number of Solutions for mJ(J),  s = 1,. . . , R( J )  for every J. We wish 
to calculate the mean over these solutions of the positive function F. Again, for J 
taking values over a finite domain 'D we define 

h ( n )  = ( I f i d m i  s ( G ( m , . 7 ) ) F ( m , J ) d e t n A  
;=I 

and 

Then 

where the sum ranges over the R ' ( J )  solutions for which the Jacobian does not 
vanish. 

Following very similar reasoning to that used previously, one shows that an analytic 
continuation h ( n )  of h ( n )  satisfying the bounds (7) coincides with H(n)  for nR > 1. 
For the case in which the J are Gaussian-distributed one can still prove the result by 
redefining the probability distribution as in (14), and the condition (15) now reads 

N 
- -Jf j -maxInldetA(m,,J)I  2 J  m. > l n Y , .  (19) 

As usual, it is convenient to exponentiate the factors in (16) 

where we have introduced the Grassmann variables qki, q o i .  As is well known [ 2 4 ]  
the exponent of (20) possesses, for n = 1, the supcrsymmctry 

6mi = E q i  6qf = - E X .  I '  (21) 

For n even, the naive extension of this supcrsymmetry fails, while on the other hand 
there is the conlinuous 'replica' symmetry 

71n.i - ",P7@i V k i  - U,&i uu'= 1. (22) 
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Moreover, if the Gi are a gradient, then this symmetry is enlarged to 

where 'pi is a 2n-dimensional Grassmann vector with components qLi, qoi and U a 
2n x 2n symplectic matrix: 

Z = ( O  -1 0 1) 

At this point one could wonder if it is possible to calculate h ( n )  for even 
negative values of n ,  and then extend it to n = 1. This could, in principle, 
be achieved by expressing the negative powers of the determinant as an ordinary 
Gaussian integral (replicated 4, 8 , .  . . times). The integration path should be chosen 
with care, otherwise the Gaussian integral diverges for Hessian matrices with negative 
I". &CL", "6C"'a""CJ. I, ,,,U 'lC.,UI'I,, ,,,a,,lA I,',., . 1 C 6 L L L L " C  (11," LC1" C1~C""',""C", L...,L. 

the function H ( n )  will not, in general, be analytic on the whole real negative axis 
of n. Hence one does not find in that case a simple prescription to prove unicity. 
Moreover, exponentiating the determinant with the ordinary Gaussian integral one 
looses sight of the BRST symmetry for n = 1, which has profound consequences as 
we shall see in the  next section. 

/n- n:nansiol..nr l f  r L n  U n r e i n n  .rntr:-. hor nnnnr:.m n m r l  _IO*_ r i n n m . z n l . . a c  + h a m  

3. The number of solutions of the 'naive' mean-field equations for the SK spin glass 

!n th& section we d&,c.ss the pl!cu!2tio!! of the !!!!!?&er of so!utio!?s of mez! fie!d 
equations for spin glasses, restricting ourselves for simplicity to the 'naive' ones, 
although the arguments arc the same for the TAP equations. We prove that, if the 
sign of the determinant of the stochastic equation is disregarded, the result is one. 
We do so first using purely geometric arguments, and then directly on the large-N 
integral approach. For this last case the BRST symmetry is fundamental. 

correct. We show how the trick discussed previously can be applied in this case. For 
apparently different reasons from those discussed in thc previous section, in both 
these calculations the determinant was calculated to negative half integer powers 
using a Gaussian representation. For the reasons discussed previously we do not 
follow this approach, but calculate it instead to even positive powers. 

Even though the results of the previous section tell us how to calculate the 
number properlyforfnite N ,  we find the usual problems of commuting the large-N 
limit with an analytical continuation. This introduces the uncertainty of finding the 
correct continuation of the saddle point. We indicate the general form of a replica 
symmetry breaking the ansatz for this case, and specify some conditions it must meet. 
However, the problem of which is the correct continuation remains open. 

n.is raises the question as to if and why t h c  known results of R M  and TN are 
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3. I .  Computntion without the absolute value: consequences of supergvmmerry 

The naive mean-field equations are 

G ; = t a ~ ~ h - ' m ; - p C J ; ~ m ~  = g ( m i ) - P x J i j m j  = O .  (26) 
j i 

Let us first discuss in some detail what happens if one tries to calculate the mean 
number of solutions disregarding the absolute value. 7b do this we set up an integral 
(16) with n = 1 (and F = 1) for this case. 

a; = (1 - mf)-'. (27) 

As pointed out in [12], this integral yields an invariant, for example with respect 
to p, and hence is equal to one (for finite p) .  This can be seen by invoking Morse 
theory (see [13] for a clear prcsentation). Because the magnetizations mi never reach 
m = +1 for N, p finite, for given J i j  and N and for all p' smaller than p the 
zeros of (26) are confined to a distance greater than, say, d ( 0 )  of the faces of the 
hypercube -1 < m, < 1. Consider a smooth surface completely contained within 
the hypercube and at a distance smaller than d ( p )  from these faces. On this surface 
the field Gi has positive norm, and one can calculate its degree [I31 on it. This 
degree is an integer (the number of roots with a positive-determinant Hessian minus 
the number of roots with a negativedeterminant Hessian) the mean over the J i j  of 
which is exactly h( 1). Now, starting from p' = 0 and going up to p' = p, the degree 
cannot change (because by construction no zero of (26) can approach the surface). 
Hence h( 1) = 1. 

Later, we shall prove this result again in detail using supersymmetry arguments 
[2-4]. At this point following BM and DGGO we exponcntiate the delta functions and 
the determinant as in (20), we average over the J i j  and partially uncouple the sites 
by introducing order parameters q ,  V, X and R (in the standard notation of BM and 
TN), to get 
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As pointed out by Plefka [14], the last term in the exponent cannot be neglected. 
Indeed, here we do not do so because this amounts to breaking the supersymmetry 
by hand. 

We now complete the uncoupling by performing an odd Grassmann Hubbard- 
Stratonovich transtormation. The result, in terms of the four even and four odd- 
Grassmann order parameters yk & ( A ,  q ,  V ,  R) , Ck = ( p * ,  p, p a ,  p )  is: 

V2 4 

h(1) = / ~ d C k d y k e ~ p [ N ( C , + C 2 ) ] C 1  = - A q -  - + 2 R z + p * p + p * ~ ( 2 9 )  2 
k = l  

e x p C z =  /&/"" d m / d q * d q  exp ( a - 2 p J R ) q * q + - p z J Z q x Z + x g ( m )  1 
"=-I 2 

+ Amz + P J V m x  - P J q * ( p * m  + p*x) - p J ( p z  + p m ) q  . (30) 

One can check that the 'microscopic' BRST transformation (21) induces a 'macro- 
1 

scopic' supersymmetry with respect to the order parameters: 

DE, = DE2 = 0 (31) 

where 

and 

Dz = 0. (33) 

Equation (31) can be obtained by considering an infinitesimal change in the order 
parameters generated by (32), and making a change of variables such as (21) in (30) 
to show that C, is invariant. For this one has to use the fact that the surface terms 
at m = f l  vanish, reflecting the fact that the zeros of (26) cannot reach these limits 
for finite p, N .  

Now, given a function of the order parameters B(yk,Ck), one shows (41 by 
integrating by parts that the expectation value of its 'total BRST derivative' is zero: 

dCk dy, exp[N(C1 + & ) ] D E  = 0. 

From this we extract some consequences. Consider a change in p: 

where 

(34) 
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Integrating by parts and using the second of (36) to show that the surface term 
vanishes: 

4 - h(1)  = - / n d C k d y k e x p ( N C I ) e x p ( N E , ) b Z 1 .  
k = 1  ap (37) 

But a short computation yields 

BEl  = P - ' D [ p J p q + ( V - 2 R ) p ]  (38) 

and hence the variation of h( 1) is a total BRST derivative, and h( 1) is indeed inde- 
pendent of the temperature. Another consequence is shown by putting B = p and 
p to obtain, respectively, 

(A)  = (V + 2 R )  = 0 (39) 

where averages arc taken with respect to the integrand in h( 1). These equations are 
satisfied at the saddle point level by the Sherrington-Kirkpatrick and the Sommers 
solutions [BM, m], but not by the Bray-Moore solution, which is hence seen to break 
the supersymmetry. 

It is interesting to note that in this context the spin-glass transition appears as a 
supersymmetry-breaking transition. 

It would seem that if a supersymmetry-breaking saddle point is found then the 
solution can be different from one. The paradox is solved by noting that in that case 
the prefactor multiplying the saddle point value vanishes to all orders in 1/N, as we 
now proceed to show (note that 1 will not be 'seen' by an 1/N expansion times an 
exponential in N). 

lb obtain the expansion we write the variables as 

YI, = Y;+ N -  YI, C k -  - N-'/ZC; (40) 112 ! 

where y! are the saddle point values, and substitute in (29) and (30). The 1/N series 
can be expressed as 

4 

exp[NS,] 2 N-'l2 / n dC; dy;A,(C',y') (41) 
?=U k = l  

where NS, is the constant saddle-point value. The BRST generator can be written 

0 = DUDl + DID, = 0: = 0:. (42) 

Note that Do # 0 if and only if the supersymmetry is broken. The invariance (31) 
reads 

D,A, = 0 D,A,+l + D , A ,  = 0 1' 2 1. (43) 
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If D, # 0 one can write, with B a constant times p or p 

1 = DUB. 
Then 

4 
- - ... = /ndC;dy: (D,B)A,(D,B) '  

k=1 

dC;dy;B(D,A,)(D,B)'= 0 (45) 

where we have repeatedly used integration by parts, (42) and (43). Hence we conclude 
that either supersymmetry is unbroken and the result is one, or it is broken and the 
prefactor cancels to all orders. 

Clearly, the existing computations of the number of solutions as they stand need 
some independent justification for p finite. 

3.2. The trick 
Let us see to what extent the trick discussed in the previous section can provide a 
way U U L .  WG 1113L  L L U L G  L L M L  C"llU,l,U,, (17, w > d L W I I S U  vy LLlC ~"I"LI"II> "L LUG Il'ilVC 

mean field (as well as the TAP) equations. Hence, forfinire N one can calculate h ( n )  
for even n with the probability distribution (14) and continue in a unique manner to 
obtain the correct result. 

Unfortunately, it seems that one can only perform the calculation of h( n)  in the  
large-N limit, and only then extend the result to n = 1 'sensibly'. One can hope 
ifi thb w y  to obtain the !age=,\' ! h i t  of the desked axa!ytic caxtixuatiox. >,e 
question becomes uncertain, the only excuse being that this uncertainty is common 
to most replica calculations. 

In the calculation of h ( n ) ,  the order parameter R and the four order parameters 
p * ,  p, p ' ,  p become replicated. The continuous symmetry (24) becomes more explicit 
by defining the 2n-dimensional odd Grassmann vectors $ and with components 
( p m ,  p:) and ( p , , p : ) ,  respectively. The role of the order parameter R is played by 
the most general Hermitian, self-dual matrix T (containing 2n2 - n real parameters): 

... ̂ .. .̂.& 117,. f-^* "-*- .Le. ,.-..A:.:-.. ,*", :" "-.!"c-,, L.. .L̂  "-,...:--" ^C &LA '_^L -, 

T = Ti Z T Z - '  = TT. (46) 
Up to leading order the exponent for h ( n )  is N ( C ,  + &), where 

(47) 2, = - A Q  . - - v 2  + c,(i"?) + F'z$ 
2 

, , 
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which can he easily seen to he left invariant by the transformations U of (24) 

T - + U T U t  [ - + U c  $ + U $ .  (49) 

Since matrices of the form T can be diagonalized by these transformations, it suffices 
as far as saddle points are concerned to consider diagonal T. If the symmetry (49) is 
unbroken, then T must be proportional to the identity. In this case, for finite n the 
integrations over odd-Grassmann order parameters $, can oniy affect the prefactor 
(as noted in DGGO), so they can be ‘set to zero’ in the saddle point calculation. 
This was assumed in TN for their corresponding parameters P,  Q, and is automatic 
in this framework (in their case it was not because those parameters where not 
odd-Grassmann). 

Assuming replica symmetry, one can readily check that a ‘naive’ continuation of 

necessary (although certainly not sufficient) condition for this  solution to be credible 
would be to exhibit a ‘reasonable’ continuation of the prefactor that does not vanish 
as n + 1. 

Another possible scenario (perhaps more satisfactory) would be that replica sym- 
metry is broken, and the effect of the breaking subsists down to n = 1 (then this 

The simplest way to implement the continuous replica symmetry breaking is to con- 
sider a saddle point with m pairs of eigenvalues of T equal to iR,  and ( n  - m) 
equal to iR,. The anzatz in TN (called GE there) seems to correspond to this scheme 
with m = 312. 

All these questions clearly require further clarification. In any case, if the present 

value has implicitly been taken. Note that in such a case we are computing the number 
of all stationary points of the free energy, not only the local minima. 

saddie point equations from evrn to = i does yieid i‘ne BM soiution. A 

so;ue,oE .wOu;~ be xutor,a~a;;y &eeieEt fiar, oiie obtained 6iiCCtkY at  . i ~  ~ 1). 

coxpuntio.s 2:e ixdeed correct for p finite, it is bec2se the i!!tegn! Wi!k !kC nbso!L& 

4. Conclusions 

We have shown that for a wide class of functions calculating the average of even 
powers n, there is a simple criterion to choose the analytic continuation which yields 
the average of the absolute value as n -+ 1. In the saddle point approximation this 
result bears the uncertainty associated with commuting analytic continuation with the 
large-N limit. 

In the case of stochastic equations; the resulting replica problem possesses a 
continuous (as opposed to permutation) symmetry. On the one hand this then implies 
that for replica symmetry breaking one only needs to consider an ansatz for which the 
order parameter matrix is diagonal, on the other hand Goldstone modes in replica 
space will appear even at integer n. 

We have discussed the existing calculations in the number of solutions in mean 
field models of spin glasses: showing they need some extra justification. The trick 
presented here provides a possible way to find an answer, although uncertainties 
arising from continuation after saddle point evaluation need further elucidation. 

We have found that the introduction of odd-Grassman orderparamerers, although 
not relevant as far as computations of saddle points are concerned, greatly clarilics 
the underlying symmetries of the problem. 
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